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ABSTRACT

Continuous-time modeling is gaining in popularity as more and more intensive longitudinal data need
to be analyzed. Current Bayesian software implementations of continuous-time models suffer from
rather high, inadequate run times. Therefore, we apply a model reformulation approach to reduce run
time. In a simulation study, we investigate the estimation quality and run time gain. We then illustrate
our optimized Bayesian continuous-time model estimation and compare it to established continuous-
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time modeling software using an empirical example. Parameter estimates and inference statistics were
very comparable, while run times were very different. Our approach reduces the run times for Bayesian

estimations of continuous-time models from hours to minutes.

Continuous-time modeling has finally found its way into
psychological and behavioral research - one indication of
which is the recently published edited volume by Van
Montfort, Oud, and Voelkle (2018). The increasing popular-
ity of intensive longitudinal data from experience sampling
(ES), ecological momentary assessment (EMA), and ambu-
latory assessment (AA), has fueled the growing interest in
continuous-time models because they are inherently well
suited to handling unequally spaced measurement occasions
and individualized assessment designs. Furthermore, contin-
uous-time models make it possible to compare the results of
studies with different time intervals between measurement
occasions.

Several software solutions for estimating continuous-time
models have been introduced, such as the R package ctsem,
which includes both a frequentist (Driver, Oud, & Voelkle,
2017) and a Bayesian estimation module (Driver & Voelkle,
2018). Whereas frequentist estimation in ctsem seems appropri-
ately fast, model run times in the Bayesian ctsem are rather high.
For instance, Hecht and Voelkle (2019) report that “[r]un time
and RAM usage of the frequentist estimation were barely notice-
able, whereas the Bayesian estimation needed approximately
2.64GB RAM and 2 days and 20 hours run time” for a contin-
uous-time model using real data. Hence, run time is definitely an
obstacle to more widespread use of existing Bayesian estimation
software for continuous-time models. One solution might be to
simply switch to the faster frequentist estimation approach;
however, users might wish to benefit from the advantages of
Bayesian estimation, which include the ability to include pre-
vious knowledge, the potential to estimate otherwise intractable
models (e.g, van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2017), and the stabilization of para-
meter estimates (e.g., Zitzmann, 2018).

Many approaches for run time optimization exist and
could potentially be implemented in Bayesian model estima-
tion. One promising approach comes from Hecht, Gische,
Vogel, and Zitzmann (2019), who suggest reformulating the
model in terms of the model implied covariance matrix and
model implied mean vector (which can be easily derived
using a structural equation modeling [SEM] framework),
and using these for MCMC sampling. By applying this
method, the information to be modeled is reduced from
possibly millions of data points to one sample scatter matrix
(with a Wishart distribution) and one sample mean vector
(with a multivariate normal distribution). One of the few
drawbacks of this approach is that individual person para-
meters (random effects) are no longer part of the model and
thus cannot be estimated. However, this is also the case in
the frequentist likelihood approaches for estimating struc-
tural equation models many users are accustomed to.
Moreover, as in SEM, individual score methods (e.g.,
Hardt, Hecht, Oud, & Voelkle, 2019; Hardt, Hecht, &
Voelkle, 2019) can be used to estimate person parameters
if there is substantive interest in them, for instance, for
individual diagnostic purposes. Another issue is that the
distributional forms of the sample scatter matrix and the
sample mean vector need to be known and Bayesian sam-
plers for these distributions need to be provided.
Fortunately, for the most common two-level data structure,
the sample scatter matrix has a Wishart distribution, which
is included in most general multi-purpose Bayesian software.
Continuous-time models involve this two-level data structure
(repeatedly measured values nested within persons); hence,
we can straightforwardly implement the model reformulation
approach for Bayesian estimation of continuous-time
models.
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Purpose and scope

In the present work, we apply the approach proposed by
Hecht, Gische, et al. (2019) to reduce the run time of a
Bayesian univariate continuous-time model for unequally
spaced assessment designs. We chose to use the Bayesian
software JAGS for its flexibility and stability. The article is
organized into the following sections. First, we present the
univariate continuous-time model and describe the necessary
model reformulations. Second, we report results from a simu-
lation study in which we compared a classic Bayesian model
implementation with the reformulated Bayesian model imple-
mentation with respect to run time and estimation quality.
Third, we present a real data example for which we calculated
estimates using our Bayesian JAGS implementations as well as
the established R package ctsem. Finally, we conclude with a
discussion of our work. Annotated R code, JAGS/BUGS code,
ctsem code, and an example data file with which to run all
presented analyses are provided in the Online Supplemental
Material.

Optimization of the univariate continuous-time
model

Unequal-interval non-individualized longitudinal designs
involve responses of j =1,...,] persons at several points in
time, £,, with p = 1,..., P being a running index denoting the
discrete measurement occasion and P being the number of
measurement occasions (see, e.g., Hecht, Hardt, Driver, &
Voelkle, 2019, for details and illustrations). Time intervals A,_,
between measurement occasions are given by A, | = t, — t,
for all p > 2, and yj, is the manifest response of person j at
measurement occasion p.

The continuous-time model is given by (adapted from
Hecht, Hardt, et al., 2019; Oud & Delsing, 2010):

forp > 2, Yip = aZ,,,lyj(p_n + bfAH + Wjp-1), (1)
with @) ~N (O,qZP,I) ; (2)
4, , = (2a) [exp(2a8,1) — 1]g, (3)
ap, , = exp(al,_1), (4)
b;Ap,l = th,lbja (5)
with bj~N(b, oﬁ) and (6)
* _ 1 *

hAp,l =a (“AP,I - 1) ) (7)

_ * 2
and forp - 17 y]l NN(“’]OO + H’dev?o-fw) ) (8)
with = —a'b;, 9)

where a is the continuous-time auto-effect; g the continuous-time
diffusion variance; b; the person-specific continuous-time inter-
cepts; ay | - da, > and bj,  their discrete-time counterparts;
and wj(, 1) is the process error term. The person-specific contin-
uous-time intercepts are normally distributed with mean b and
variance of and determine the person-specific long-range process
means (L. At the first measurement occasion, the value y;; for

each person is assumed to be normally distributed with the per-
son-specific process mean plus a deviation 1, as location and a
within-person variance oﬁN (constant across persons). For more
explanations, examples, and illustrations of this (and other) con-
tinuous-time models see Hecht, Hardt, et al. (2019), Hecht and
Voelkle (2019), Driver et al. (2017), Driver and Voelkle (2018), and
Voelkle, Oud, Davidov, and Schmidt (2012).

To stabilize the estimation, we express the discrete-time
process intercepts in terms of the long-range process means —
an approach also employed by Driver et al. (2017). Equivalent
to Equations 1 and 6, this yields:

forp > 2,
. LN (10)
Yip = an, Jitp-1) T (1 - “Ap,l)ujoc T Qj(p-1),
Moo~ N (15, %), (11)
with 0 = a2 o}, (12)

The complete model is given by the autoregressive process for-
mulation (Equation 10), the distributional assumption for the
person-specific process means . (Equation 11), the distribu-
tional assumption for the values y;; at the first measurement
occasion (Equation 8), the distributional assumption for the pro-
cess errors wj,_1) (Equation 2), the function to relate discrete-
time interval-dependent process error variances to the continu-
ous-time diffusion variance g (Equation 3), and the function to
relate discrete-time, interval-dependent autoregressive effects to
the auto-effect a (Equation 4). This model is depicted in Figure 1
for P =3 measurement occasions, with the estimated model
parameters set in light-colored text on a dark background: the
continuous-time auto-effect g, the continuous-time diffusion var-
iance g, the between-person variance of the process means o> , the
within-person variance at the first measurement occasion o,
(assumed constant across persons), the total process mean p’_,
and the deviation of the mean at the first measurement occasion
Ugey from the total process mean.

To optimize the Bayesian estimation run time for this
model, we use the approach described by Hecht, Gische, et al.
(2019). The central idea is to use the sample scatter matrix S
(also called the mean-corrected sums of squares and cross
product [SSCP] matrix, Carroll & Green, 1997) and the sample
mean vector y instead of the raw response data. As we have a
two-level data structure (i.e., repeatedly measured responses
nested within persons), the sample scatter matrix has a Wishart
distribution (e.g., Pham-Gia & Choulakian, 2014):

"In line with Oud and Delsing (2010) and Hecht, Hardt, et al. (2019) we use the asterisk symbol * to denote discrete-time parameters that can be calculated
from continuous-time parameters. In the present article, we limited ourselves to first-order continuous-time models with auto-effects, g, in the range
(— 00,0), which implies discrete-time autoregressive effects, a*AH, in the range (0, 1).



STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 831

Aay ..
(Bq. 3) 7

o
.""‘(Eq. 3)

@ v [
A 1..} .
X « —ay,
/1\ 1.

Figure 1. The univariate continuous-time model with three measurement occasions. Model parameters that are estimated are set in light text color on dark

background.

where the scale matrix X is the model implied covariance
matrix and the degrees of freedom are J — 1. The sample
mean vector is multivariate normally distributed (adapted
from Flury, 1997, Chapter 4):

= Ni(p 1 2).
where p is the model implied mean vector. To build the
model implied covariance matrix and mean vector, any
structural equation modeling framework such as LISREL
(Joreskog, Olsson, & Wallentin, 2016) or RAM (McArdle
& McDonald, 1984; see also Boker, 2019) is a suitable and
convenient choice. In Appendix A, we use the RAM
approach to derive £ and p and give the solutions in
Table Bl in Appendix B.

(14)

Simulation study

In this simulation study, we show that our model reformula-
tion approach leads to massive run time reductions. We chose
the Bayesian software JAGS for its flexibility and widespread
use, although the approach should be suitable for and easily
implementable in the vast majority of Bayesian software pro-
grams (e.g., in the software Stan by Carpenter et al., 2017). As
run time gains are of less value if they are at the expense of
parameter estimation quality, we also include parameter
recovery and precision statistics in our comparison.

Data generation

The data-generating model was the univariate continuous-time
model described in Equations 10, 11, 8, 2, 3, and 4 and depicted

in Figure 1 with true parameter values a = —0.40, g = 0.40,
o2 = 0.50, 0}, = 0.50, w, =0, and py,, = 0; J = 2,000 per-
sons; and P = 20 measurement occasions. The full data-gener-
ating model is:

Ko ~N(0,0.50),
for p=1, yp ~./\/'(p;fC>C + 0,0.50) )

forp > 2, Ay 1~U0.25050,0.75,1,1.25,1.50,1.75,2} 5

da, , = [2(=0.40)] " {exp[2(—0.40)A, ] — 1}0.40,

wipn~N (0,43, ).
a, = exp[(—0.40)A,_],

p—1

Yie = @a, Vi) + (1 - aZP,1>P}‘oo + Wjp-1);

where U denotes a uniform distribution.

Analysis

We generated Ny = 1,000 data sets, each of which was ana-
lyzed with three Bayesian implementations of the univariate
continuous-time model: (1) The classic way to set up a
Bayesian model is to use the model formulations that include
individual parameters (Equations 10, 11, 8, 2, 3, and 4) and
transfer those equations into Bayesian software syntax (classic
implementation). We ran two versions of the classic implemen-
tation: one in which the individual parameters y;,, and the

individual state estimates were tracked, and one in which they
were not. (2) In the second implementation, we used the refor-
mulated model based on the model implied covariance matrix
(Equation 13; covariance-based implementation). (3) In the third
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implementation, we added the estimation of means (Equation
14) to the covariance-based implementation, resulting in the
covariance- and mean-based implementation. All models were
estimated with JAGS 4.3.0 (Plummer, 2017) interfaced via the R
package rjags 4-9 (Plummer, 2019) running on R version 3.6.1
(R Core Team, 2019). We chose a quite uninformative prior for
each variance g, 0%, and o2, namely, an inverse gamma dis-
tribution with a shape and scale of 0.001. The auto-effect a had a
truncated normal prior N (0, 10000)T(—o0, —1/10°] and both
mean parameters, ' and p,,, were assigned a more narrow
normal prior distribution A/(0,9) in order to stabilize the esti-
mation. Such stabilization techniques were developed for multi-
level SEM (e.g., Chung, Gelman, Rabe-Hesketh, Liu, & Dorie,
2015; McNeish, 2016; Zitzmann, Liidtke, Robitzsch, & Marsh,
2016) and have been shown to be an attractive choice, particu-
larly when users run into issues with convergence (see Zitzmann,
2018). Starting values for the model parameters were random
draws from the uniform distribution /(—3, —1/10°) for a; from
N(0,1)T[1/10°,00) (R package truncnorm, Mersmann,
Trautmann, Steuer, & Bornkamp, 2018) for g, 0%, and o} ;
and from N(0,1) for p and pg,. For all three Bayesian
model implementations, the same 1,000 generated data sets
and starting values were used. To monitor sampling and stop
sampling when a certain stopping rule applies, we used the
procedure described in Hecht, Gische, et al. (2019) with one
MCMC chain, an iteration block size of 50, a burning share of
0.10, a thinning interval of 1 (no thinning), and maximum
number of iterations = 200,000. Sampling was stopped when
all parameters reached an effective sample size ESS > 400 and a
potential scale reduction factor PSR < 1.001 (see Zitzmann &
Hecht, 2019, for a discussion of these statistics and threshold
values). ESS, PSR, and autocorrelations (AC) of the MCMC
samples were computed with the R package shinystan (Gabry,
2018). After the stopping criteria were met, the mode of the
converged chain served as the parameter estimate. We used the
mode because it can be considered a natural extension of the ML
estimator (see DeCarlo, Kim, & Johnson, 2011) and can outper-
form the mean and the median (e.g., Zitzmann, Lidtke, &
Robitzsch, 2015). However, we also checked whether using the
mean instead of the mode made any difference in our analyses,
and this was not the case. As parameter recovery and precision
statistics, the bias, root mean squared error (RMSE), coverage rate,
and standard error accuracy were calculated as described in
Hecht, Hardt, et al. (2019, equations 30 and 32-35 in the
Appendix), except that we used the mode instead of the mean as
the parameter estimate. Each analysis was run on one Intel Xeon
Gold 5120 (2.20 GHz) CPU of a 64-bit Linux Debian 9 “Stretch”
computer.

Results

Table 1 shows the results and run times for all three imple-
mentations. All parameters were recovered very well in all
implementations with practically no bias. The RMSE values
were comparable across implementations. Coverage rates and

standard error accuracy were very good for all parameters in
all implementations. However, the implementations differed
considerably with respect to run time. Whereas the classic
implementation needed on average 50.1 min without tracking
and 56.8min with tracking of the individual parameters, the
covariance-based implementation was roughly eight times
faster (M = 6.5min) and the covariance- and mean-based
implementation was approximately four times faster
(M = 14.6min).> One mechanism contributing to the run
time reduction can be identified by inspecting the autocorre-
lation of the MCMC chain. In the classic implementation, the
autocorrelation was M = 0.326 on average, whereas it was
much lower in the reformulated implementations
(M =0.182 and M = 0.133). Therefore, fewer iterations
were needed to reach the ESS stopping criterion, resulting in
faster estimation.

In summary, our model reformulation approach led to
considerable run time reductions, while estimation quality
was very high.

Empirical example

We use publicly available data from the ‘Midlife in the United
States (MIDUS 2): Daily Stress Project, 2004-2009" (Ryff &
Almeida, 2017), a longitudinal study of health and well-being,
to illustrate our Bayesian covariance- and mean-based imple-
mentation of the univariate continuous-time model. For refer-
ence purposes, we also report results obtained from Bayesian
and frequentist estimation with the continuous-time modeling
R package ctsem (Driver, Oud, & Voelkle, 2019). The MIDUS 2
data set contains data from 2,022 persons assessed at 8 mea-
surement occasions; after data screening and preparation (see
Hecht & Voelkle, 2019), 1,650 persons remained. For illustra-
tive purposes, we focus on the variable “symptom severity”
(B2DSYMAYV, 1 = very mild, 10 = very severe). There are no
missing values; thus, all persons have data for all measurement
occasions (leading to a total of 8- 1,650 = 13,200 observations).

The analyses were conducted on the same machine and
with the same specifications and run parameters as described
in the simulation study, except for the following modifica-
tions. The minimum required effective sample size was set to
1,000. In line with Hecht and Voelkle (2019), and because
freely estimating the parameters at the first measurement
occasion is not possible in the used Bayesian version of
ctsem, we constrained the parameters for the first measure-
ment occasion to the stationary process parameters. In our
implementation, this is achieved by the constraints p,,, =0
and o}, = [—1/(2a)]q. The location of the normal prior for
pi was set to the total mean of the sample data:
w ~N(2.4,9). The raw MCMC chain (with 4,444 iterations)
returned by ctStanFit() (Bayesian ctsem) was post-processed
exactly like the chains from our JAGS implementations with
10% burnin and the mode as the parameter estimate.

Results and MCMC statistics are provided in Tables 2 and 3.
The MCMC chains for all parameters in all Bayesian analyses
converged (PSR very close to 1), and parameter precision was

2Some few analyses with extreme run times occurred. Inspecting these, we noticed that the starting value for at least one of the variances was very close to

0. Therefore, many more iterations were needed to reach convergence.
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Table 1. Parameter quality and run time for three Bayesian implementations of the univariate continuous-time model (simulated data).

Classic Cov.-based Cov./mean-based
Statistic Parameter Value Value Value
Bias a —-0.000151 —-0.000111 —0.000036
q -0.000023 -0.000018 -0.000028
Of; —0.000251 —-0.000119 —-0.000047
G%N —0.000471 —0.000680 —0.000467
Vi 0.000109 - 0.000181
Heley -0.000806 - -0.000736
RMSE a 0.0073 0.0073 0.0074
q 0.0036 0.0036 0.0036
0; 0.0188 0.0188 0.0190
a, 0.0187 0.0184 0.0187
(Vi 0.0177 - 0.0175
Uev 0.0180 - 0.0181
Coverage rate 95% a 0.948 0.948 0.949
q 0.950 0.948 0.950
o2 0.956 0.957 0.961
of, 0.957 0.960 0.957
Vi 0.947 - 0.950
Hev 0.942 - 0.934
SE accuracy a 0.985 0.980 0.976
q 1.015 1.008 1.001
oi; 1.021 1.019 1.011
o 1.018 1.034 1.020
Vs 0.996 - 1.007
Hetey 0.982 - 0.976
Run time (minutes) M 50.1 / 56.8" 6.5 14.6
min 132/ 164 1.0 12
Qo.05 108.9 / 114.1" 1.7 16.2
max 217.4 / 403.6' 330.7 3770.7
PSR M 1.0000 0.9989 0.9990
min 0.9991 0.9976 0.9976
max 1.0010 1.0010 1.0010
ESS M 1046 777 1018
min 400 400 400
max 5238 6409 119308
AC M 0.326 0.182 0.133
min 0.102 -0.111 -0.121
max 0.607 0.718 0.760
Number of iterations M 2380 1335 1637
min 1200 700 700
max 19950 42650 144700

Cov. = covariance, Qp.o5 = 0.95 quantile, Nep = 1,000, PSR < 1.001 and ESS > 400 for all parameters, J = 2,000 persons, P = 20 measurement occasions, one chain
ran on one Intel Xeon Gold 5120 (2.20 GHz) CPU of a 64-bit Linux Debian 9 “Stretch” computer. RMSE = root mean squared error; SE = standard error; PSR =
potential scale reduction factor; ESS = effective sample size; AC = autocorrelation. ' The first value is the run time without tracking, the second value with tracking
of individual parameters.

Table 2. Results of the univariate continuous-time model for the variable “symptom severity” from the MIDUS 2 study.

Classic Covariance-/mean-based Bayesian ctsem Frequentist ctsem
Parameter Est. LL95 UL95 Est. LL95 UL95 Est. LL95 UL95 Est. LL95 uL95
a -1.61 -1.74 -1.50 -1.62 -1.74 -1.50 -1.62 -1.74 -1.50 -1.61 -1.72 -1.49
q 6.22 5.91 6.70 6.30 5.90 6.69 6.26 5.90 6.69 6.26 5.87 6.65
o, 1.38 1.27 1.51 1.38 1.27 1.51 1.39 1.27 1.52 1.38 1.26 1.50
ui 255 248 261 2.54 248 261 255 248 261 255 2.48 261
Run time (minutes) 51.0 / 78.7" 39 851.2 0.05

J =1,650 persons, P = 8 measurement occasions. LL95 and UL95 are the lower and upper limit of the 95% credible interval in the Bayesian models and of the 95%
confidence interval in the frequentist model. The parameterizations of the software implementations differ, therefore, parameters were transformed for
comparison. ' The first value is the run time without tracking, the second value with tracking of individual parameters.

Table 3. Bayesian MCMC estimation statistics for the univariate continuous-time model (MIDUS 2 data).

Classic Covariance-/mean-based Bayesian ctsem
Parameter PSR ESS AC PSR ESS AC PSR ESS AC
a 1.0008 1003 0.886 1.0000 1001 0.831 1.0000 1812 0.183
q 1.0009 1043 0.857 1.0001 1004 0.831 1.0000 2382 0.094
oi;\ 1.0000 6212 0.387 0.9999 9982 0.005 1.0001 177 0.299
uh 1.0000 10269 0.208 0.9999 10080 -0.020 0.9998 1853 0.265

J = 1,650 persons, P = 8 measurement occasions. PSR = potential scale reduction factor; ESS = effective sample size; AC = autocorrelation. The parameterizations of
the software implementations differ, therefore, parameters were transformed for comparison.
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good (ESS > 1,000). The estimates were very similar across all
software implementations. The Bayesian credible interval widths
and the frequentist confidence interval widths were very similar
as well. We again observed pronounced differences regarding
run time. The frequentist ctsem model achieved the fastest
estimation (0.05 min). Second place goes to our covariance-/
mean-based implementation, with a 3.9 min run time. The
classic implementation ran for 51.0 min without tracking, and
78.7 min with tracking individual parameters. The longest run
time by far, 851.2 min (roughly 14 h), was observed for Bayesian
ctsem.

In summary, we have shown that our classic and reformulated
Bayesian implementations produce similar results as the currently
most prominent continuous-time modeling software ctsem, but
are by far computationally more efficient than Bayesian ctsem.

Discussion

Run time for Bayesian models can be unsatisfactorily high,
especially for more advanced and complex models such as
continuous-time models. We employed the run time optimi-
zation approach described in Hecht, Gische, et al. (2019),
which is based on a reformulation of the model in terms of
covariances and means. This massively reduces the amount of
information that needs to be modeled, leading to a massive
reduction in run time. In an empirical example, we compared
our approach to the leading continuous-time modeling soft-
ware ctsem and found no differences in estimates, but large
differences with respect to run time. Our approach reduces
the run time of Bayesian estimations of continuous-time
models from hours (possibly days) to minutes.

Several issues and limitations of our work need to be taken
into consideration: (1) The model we employed was one of the
simpler models from the class of continuous-time models,
namely a univariate continuous-time model with between-per-
son differences in process means. Moreover, the design used
had unequal spacing between measurement occasions but was
not individualized across persons. Future run time optimiza-
tion research should address more complex continuous-time
models, such as those involving multiple processes, measure-
ment models, predictors, trends, and between-person variance
in other parameters, and should extend the approach to
unequal-interval individualized designs. (2) Our simulation
study involved only one simulation design factor, namely, the
Bayesian model implementations. All other factors (e.g., the
number of persons and the number of measurement occasions)
that might have an effect on run time were kept constant.
Nevertheless, we believe that our approach should generalize
to a large number of other conditions and should be especially
advantageous for large sample sizes, because increasing of the
sample size (by including more persons) is most likely neutral
with respect to run time in our approach, whereas run time in
classic Bayesian approaches increases with increasing sample
size. We illustrate the plausibility of this effect in our example
in the Online Supplemental Material, which involves data from
J = 10,000 persons and P = 3 measurement occasions. For
this example, the classic implementation runs over 2 h, whereas
the reformulated implementations estimate the model

parameters in less than 1 min. Furthermore, we ran our simu-
lation again, this time with J = 200 instead of J = 2,000 per-
sons. Even with many fewer persons, the reformulated models
still yield a run time gain. The covariance-based model was
roughly three times faster and the covariance- and mean-based
model almost twice as fast as the classic implementation (see
Table Cl1 in Appendix C). (3) To check whether deviations from
the assumed normal distributions matter, we ran the simulation
yet again with data generated from skewed normal distributions
using the function rsnorm() from the R package fGarch (Wiirtz
et al., 2019). We used a skewness of 2, as this value is one of the
“realistic conditions that are worthwhile to explore” (Reinartz,
Echambadi, & Chin, 2002, p. 231 and Table 1). The results of this
simulation are presented in Table D1 in Appendix D. Bias is just a
tiny bit larger (maximum absolute difference = 0.000528) than in
the simulation study without skewness misspecifications.
Coverage rates and standard error accuracies are marginally
worse, but still quite good. Thus, our presented implementations
are robust to violations of the normality assumption in the form of
skewed distributions. However, in future research, it would be
interesting to test whether the proposed implementations are
robust to other forms of non-normality (e.g., kurtosis # 0) and
other model misspecifications. (4) We compared our approach to
established continuous-time modeling software. Due to the ele-
vated run time of the Bayesian ctsem estimation and limited
computational resources, we could not include Bayesian ctsem in
our simulation study; instead, we illustrated similarities and differ-
ences between the two software (JAGS vs. Bayesian ctsem) in a real
data analysis and tried to ensure comparability to the greatest
extent possible (e.g., by using the same post-processing of
MCMC chains and assuring approximately equivalent effective
sample sizes and convergence statistics). (5) The advantage of
Bayesian ctsem over our covariance-/mean-based implementation
is, of course, that individual state values are estimated and made
available. This might be worth the additional run time. However, if
researchers are not substantively interested in these parameters,
there is no need to wait days for their estimation. Moreover, if
individual parameters are of interest, our classic Bayesian imple-
mentation (with a tracking of these parameters) could be used,
which is still by far computationally more efficient than Bayesian
ctsem. Another approach would be to use individual score meth-
ods in a second step after estimating the model parameters. For
autoregressive panel models, Hardt, Hecht, and Voelkle (2019)
recommend either the Bartlett method, the regression method, or
the Kalman filter. Run times for these methods do not seem to be
an issue, as run times are often not even reported, and Estabrook
and Neale (2013) speak of “trivial computation time” for obtain-
ing Bartlett scores (p. 18). We additionally ran the Kalman filter for
all replications in our simulation study using the R package FKF
(Luethi, Erb, & Otziger, 2018). Run times for estimating 40,000
state values were M = 0.34 seconds on average (min = 0.26, max =
0.71). Thus, person score estimation as a second subsequent step
requires virtually no additional computational time. (6)
Frequentist estimation might be faster than Bayesian estimation
(as shown in our empirical example). However, Bayesian estima-
tion has several advantages (e.g., inclusion of previous knowledge,
estimation of otherwise intractable models, stabilization of para-
meter estimates, a different (presumably more intuitive)
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philosophy for making inferences) that might be attractive to
users. (7) We used JAGS because it is a popular and stable multi-
purpose Bayesian software. The proposed approach should easily
work with other Bayesian software programs as well. However, the
run time gain depends on the efficiency and speed of the imple-
mented samplers and thus might differ across programs. (8) The
presented implementations in their current form only work with
complete data. One straightforward option for dealing with miss-
ing data without modifying our implementations is multiple
imputation (e.g., Rubin, 1987). Alternatively, FIML-like proce-
dures for handling missing data could be programmed into the
Bayesian model. However, this would be a subject for future
research. (9) Running multiple MCMC chains in parallel on multi-
ple cores is another option to reduce run time even more and can
be combined with all of the presented implementations. For
example, Hecht and Voelkle (2019) report that a parallelization
with 32 chains on 32 cores reduced the run time to one fourth of its
previous value.

In conclusion, we have shown that Hecht, Gische, et al.’s
(2019) model reformulation approach can be used for com-
putationally more efficient Bayesian estimation of continuous-
time models and have made Bayesian continuous-time mod-
eling feasible for large sample analysis.

Acknowledgments

We thank Charles Driver and Manuel Voelkle for the many insightful
discussions about continuous-time modeling over the past years. Many
thanks also to Keri Hartman for carefully proofreading our manuscript.

Funding

We acknowledge support by the Open Access Publication Fund of
Humboldt-Universitit zu Berlin.

ORCID

Martin Hecht (@ http://orcid.org/0000-0002-5168-4911

References

Boker, S. M. (2019). The reticular action model: A remarkably lasting
achievement. In E. Ferrer, S. M. Boker, & K. J. Grimm (Eds.),
Longitudinal multivariate psychology (pp. 126-142). New York, NY:
Routledge.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt,
M, ... Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76, 1-32. doi:10.18637/js5.v076.i01

Carroll, J. D., & Green, P. E. (1997). Vector and matrix operations for
multivariate analysis. In Eds. J. D. Carroll & P. E. Green,
Mathematical tools for applied multivariate analysis (pp. 26-76).
doi:10.1016/B978-012160954-2/50003-2

Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., & Dorie, V. (2015).
Weakly informative prior for point estimation of covariance matrices
in hierarchical models. Journal of Educational and Behavioral
Statistics, 40, 136-157. doi:10.3102/1076998615570945

DeCarlo, L. T.,Kim, Y., & Johnson, M. S. (2011). A hierarchical rater model for
constructed responses, with a signal detection rater model. Journal of
Educational — Measurement, 48, 333-356. doi:10.1111/j.1745-
3984.2011.00143.x

Driver, C. C, Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time
structural equation modelling with R package ctsem. Journal of
Statistical Software, 77, 1-35. doi:10.18637/jss.v077.i05

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2019). ctsem: Continuous
time structural equation modelling (Version 2.9.6) [Computer soft-
ware]. Retrieved from http://CRAN.R-project.org/package=ctsem

Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous
time dynamic modeling. Psychological Methods, 23, 774-799.
doi:10.1037/met0000168

Estabrook, R., & Neale, M. (2013). A comparison of factor score estima-
tion methods in the presence of missing data: Reliability and an
application to nicotine dependence. Multivariate Behavioral
Research, 48, 1-27. doi:10.1080/00273171.2012.730072

Flury, B. (1997). A first course in multivariate statistics. New York, NY:
Springer.

Gabry, J. (2018). shinystan: Interactive visual and numerical diagnos-
tics and posterior analysis for Bayesian models (Version 2.5.0)
[Computer software]. Retrieved from http://cran.r-project.org/pack
age=shinystan

Hardt, K., Hecht, M., Oud, J. H. L., & Voelkle, M. C. (2019). Where have the
persons gone? — An illustration of individual score methods in autore-
gressive panel models. Structural Equation Modeling, 26, 310-323.
doi:10.1080/10705511.2018.1517355

Hardt, K., Hecht, M., & Voelkle, M. C. (2019). Robustness of individual
score methods against model misspecification in autoregressive panel
models. Structural Equation Modeling. Advance online publication.
doi: 10.1080/10705511.2019.1642755

Hecht, M., Gische, C., Vogel, D., & Zitzmann, S. (2019). Integrating out
nuisance parameters for computationally more efficient Bayesian esti-
mation — An illustration and tutorial. Structural Equation Modeling.
Advance online publication. doi:10.1080/10705511.2019.1647432

Hecht, M., Hardt, K., Driver, C. C., & Voelkle, M. C. (2019). Bayesian
continuous-time Rasch models. Psychological Methods, 24, 516-537.
doi:10.1037/met0000205

Hecht, M., & Voelkle, M. C. (2019). Continuous-time modeling in prevention
research: An illustration. International Journal of Behavioral Development.
Advance online publication. doi:10.1177/0165025419885026

Joreskog, K. G., Olsson, U. H., & Wallentin, F. Y. (2016). Multivariate
analysis with LISREL. New York, NY: Springer International Publishing.

Luethi, D., Erb, P., & Otziger, S. (2018). FKF: Fast Kalman filter (Version
0.1.5) [Computer software]. Retrieved from http://CRAN.R-project.
org/package=FKF

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of
the reticular action model for moment structures. British Journal of
Mathematical and Statistical Psychology, 37, 234-251. doi:10.1111/
j.2044-8317.1984.tb00802.x

McNeish, D. M. (2016). Using data-dependent priors to mitigate small
sample bias in latent growth models: A discussion and illustration
using Mplus. Journal of Educational and Behavioral Statistics, 41, 27-
56. d0i:10.3102/1076998615621299

Mersmann, O., Trautmann, H., Steuer, D., & Bornkamp, B. (2018).
truncnorm: Truncated normal distribution (Version 1.0-8)
[Computer software]. Retrieved from http://cran.r-project.org/pack
age=truncnorm

Oud, J. H. L,, & Delsing, M. J. M. H. (2010). Continuous time modeling of
panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra
(Eds.), Longitudinal research with latent variables (pp. 201-244). Berlin,
Germany: Springer.

Pham-Gia, T., & Choulakian, V. (2014). Distribution of the sample
correlation matrix and applications. Open Journal of Statistics, 4,
330-344. doi:10.4236/0js.2014.45033

Plummer, M. (2017). JAGS (Version 4.3.0) [Computer software].
Retrieved from https://sourceforge.net/projects/mcmc-jags/files

Plummer, M. (2019). rjags: Bayesian graphical models using MCMC
(Version 4-9) [Computer software]. Retrieved from http://cran.r-pro
ject.org/package=rjags

R Core Team. (2019). R: A language and environment for statistical comput-
ing (Version 3.6.1) [Computer Software]. Vienna, Austria: R Foundation
for Statistical Computing. Retrieved from http://www.R-project.org


http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1016/B978-012160954-2/50003-2
http://dx.doi.org/10.3102/1076998615570945
http://dx.doi.org/10.1111/j.1745-3984.2011.00143.x
http://dx.doi.org/10.1111/j.1745-3984.2011.00143.x
http://dx.doi.org/10.18637/jss.v077.i05
http://CRAN.R-project.org/package=ctsem
http://dx.doi.org/10.1037/met0000168
http://dx.doi.org/10.1080/00273171.2012.730072
http://cran.r-project.org/package=shinystan
http://cran.r-project.org/package=shinystan
http://dx.doi.org/10.1080/10705511.2018.1517355
http://dx.doi.org/10.1080/10705511.2019.1642755
http://dx.doi.org/10.1080/10705511.2019.1647432
http://dx.doi.org/10.1037/met0000205
http://dx.doi.org/10.1177/0165025419885026
http://CRAN.R-project.org/package=FKF
http://CRAN.R-project.org/package=FKF
http://dx.doi.org/10.1111/j.2044-8317.1984.tb00802.x
http://dx.doi.org/10.1111/j.2044-8317.1984.tb00802.x
http://dx.doi.org/10.3102/1076998615621299
http://cran.r-project.org/package=truncnorm
http://cran.r-project.org/package=truncnorm
http://dx.doi.org/10.4236/ojs.2014.45033
https://sourceforge.net/projects/mcmc-jags/files
http://cran.r-project.org/package=rjags
http://cran.r-project.org/package=rjags
http://www.R-project.org

836 HECHT AND ZITZMANN

Reinartz, W. J., Echambadi, R., & Chin, W. W. (2002). Generating non-
normal data for simulation of structural equation models using matt-
son’s method. Multivariate Behavioral Research, 37, 227-244.
doi:10.1207/S15327906 MBR3702_03

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New
York, NY: Wiley.

Ryff, C. D., & Almeida, D. M. (2017). Midlife in the United States (MIDUS
2): Daily stress project, 2004-2009 [data file, documentation, and code
book]. Ann Arbor, MI: Inter-university Consortium for Political and
Social Research. doi:10.3886/ICPSR26841.v2

Van Montfort, K., Oud, J. H. L, & Voelkle, M. C. (Eds.). (2018).
Continuous time modeling in the behavioral and related sciences.
Cham, Switzerland: Springer.

Voelkle, M. C,, Oud, J. H. L,, Davidov, E,, & Schmidt, P. (2012). An SEM
approach to continuous time modeling of panel data: Relating authoritarian-
ism and anomia. Psychological Methods, 17, 176-192. doi:10.1037/a0027543

van de Schoot, R,, Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., &
Depaoli, S. (2017). A systematic review of Bayesian articles in psychology:
The last 25 years. Psychological Methods, 22, 217-239. doi:10.1037/
met0000100

Appendix A RAM model formulation

Wiirtz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklovac, M.
(2019). fGarch: Rmetrics - autoregressive conditional heteroskedastic
modelling (version 3042.83.1) [Computer software]. Retrieved from
http://CRAN.R-project.org/package=fGarch

Zitzmann, S. (2018). A computationally more efficient and more
accurate stepwise approach for correcting for sampling error and
measurement error. Multivariate Behavioral Research, 53, 612-
632. doi:10.1080/00273171.2018.1469086

Zitzmann, S., & Hecht, M. (2019). Going beyond convergence in
Bayesian estimation: Why precision matters too and how to
assess it.  Structural ~Equation Modeling, 26, 646-661.
doi:10.1080/10705511.2018.1545232

Zitzmann, S., Liidtke, O., & Robitzsch, A. (2015). A Bayesian approach to
more stable estimates of group-level effects in contextual studies.
Multivariate Behavioral Research, 50, 688-705. doi:10.1080/
00273171.2015.1090899

Zitzmann, S., Lidtke, O., Robitzsch, A., & Marsh, H. W. (2016). A
Bayesian approach for estimating multilevel latent contextual models.
Structural ~ Equation — Modeling, 23, 661-679.  doi:10.1080/
10705511.2016.1207179

Here we specify the univariate continuous-time model (depicted in Figure 1 and described in Equations 10, 11, 8, 2, 3, and 4) within the RAM structural equation
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With these terms, the model implied covariance matrix £ and the model implied mean vector u can then be calculated as
— _ AL oAl
I =F(I,—A) 'S, A) 'F,
p =F(,—A) M,
Px1
where I, is an identity matrix of size 3P. The solutions can be found in Table Bl in Appendix B.
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Appendix B Model Implied Covariance Matrix and Mean Vector

Table B1. Model implied variances, covariances, and means for the univariate continuous-time model.
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r = row, ¢ = column of covariance matrix and mean vector; P = number of measurement occasions.
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Appendix C Results from simulations with reduced number of persons

Table C1. Parameter quality and run time for three Bayesian implementations of the univariate continuous-time model (simulated data with reduced number of
persons, J = 200).

Classic Cov.-based Cov./mean-based
Statistic Parameter Value Value Value
Bias a -0.001126 -0.001394 0.000881
q 0.000429 0.000414 0.000379
0% -0.007554 -0.007579 -0.007829
ogw -0.003437 —-0.003176 —-0.003690
[V 0.001115 - 0.000905
Hetey -0.000494 - -0.000361
RMSE a 0.0235 0.0233 0.0235
q 0.0117 0.0118 0.0118
oi; 0.0618 0.0616 0.0615
ogw 0.0601 0.0610 0.0610
Vi 0.0578 - 0.0579
Heley 0.0554 - 0.0557
Coverage rate 95% a 0.930 0.936 0.932
q 0.951 0.951 0.950
0% 0.954 0.956 0.951
o, 0.950 0.947 0.947
[V 0.936 - 0.941
Heley 0.953 - 0.949
SE accuracy a 0.967 0.978 0.971
q 0.986 0.978 0.978
0% 1.002 1.006 1.010
o}, 1.027 1.010 1.012
Vi 0.967 - 0.966
Hdev 1.014 - 1.006
Run time (minutes) M 10.1 33 5.6
min 3.2 1.2 2.0
Qo.05 19.5 5.0 8.3
max 734 1925 589.3
PSR M 1.0000 0.9997 0.9997
min 0.9991 0.9984 0.9983
max 1.0010 1.0010 1.0010
ESS M 1052 753 959
min 400 400 400
max 7879 6610 38393
AC M 0.329 0.202 0.149
min 0.086 -0.097 —-0.090
max 0.685 0.580 0.552
Number of iterations M 2406 1335 1493
min 1250 700 650
max 14250 50750 45550

Cov. = covariance, Qg5 = 0.95 quantile, Niep = 1,000, PSR < 1.001 and ESS > 400 for all parameters, J = 200 persons, P = 20 measurement occasions, one chain
ran on one Intel Xeon Gold 5120 (2.20 GHz) CPU of a 64-bit Linux Debian 9 “Stretch” computer. RMSE = root mean squared error; SE = standard error; PSR =
potential scale reduction factor; ESS = effective sample size; AC = autocorrelation.
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Appendix D Results from simulations with skewed normal distributions

Table D1. Parameter quality and run time for three Bayesian implementations of the univariate continuous-time model (simulated data with skewed normal
distributions).

Classic Cov.-based Cov./mean-based
Statistic Parameter Value Value Value
Bias a -0.000243 -0.000228 -0.000175
q -0.000039 -0.000044 -0.000051
0% 0.000363 0.000455 0.000427
o2, -0.000999 -0.000974 -0.000737
Vi -0.000130 - -0.000237
Uev -0.001254 - -0.001159
RMSE a 0.0072 0.0072 0.0072
q 0.0039 0.0040 0.0040
oiz 0.0213 0.0211 0.0214
o, 0.0199 0.0199 0.0200
(Vi 0.0182 . 0.0183
Hev 0.0184 - 0.0181
Coverage rate 95% a 0.949 0.946 0.952
q 0.931 0.928 0.932
0% 0.921 0928 0.922
oy 0.939 0937 0.938
o 0.949 - 0.945
Hetey 0.939 - 0.940
SE accuracy a 0.994 0.988 0.985
q 0.930 0.915 0913
oi; 0.899 0.905 0.896
o, 0.954 0.951 0.951
Vil 0.968 - 0.967
Hetey 0.963 - 0.973
Run time (minutes) M 94.0 57 8.4
min 29.1 14 2.0
Qo.05 185.9 10.6 16.0
max 584.1 362.6 916.5
PSR M 1.0000 0.9996 0.9997
min 0.9992 0.9984 0.9984
max 1.0010 1.0010 1.0010
ESS M 1053 767 950
min 400 400 400
max 6570 5322 42467
AC M 0.325 0.181 0.133
min 0.086 -0.128 -0.094
max 0.669 0.744 0.685
Number of iterations M 2380 1265 1406
min 1250 700 700
max 11700 42450 51250

Cov. = covariance, Qg 95 = 0.95 quantile, Nrepi = 1,000, PSR < 1.001 and ESS > 400 for all parameters, J = 2,000 persons, P = 20 measurement occasions, one chain
ran on one Intel Xeon Gold 5120 (2.20 GHz) CPU of a 64-bit Linux Debian 9 “Stretch” computer. RMSE = root mean squared error; SE = standard error; PSR =
potential scale reduction factor; ESS = effective sample size; AC = autocorrelation. In the data generation, the skewness of the normal distributions was set to 2.
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